

Department of Environmental Quality Air Quality Division

Permit Application Form

0.0	E	Is this a revision	on to an existing	; application?	- H		
WYON	IING	Yes	and other	No X	2005	Date of Application:	6/12/2015
		Previous Appl	ication #:				
COMPAN	I IY INFOR	MATION:	ication iii	JAVE	_		
Company N		MINIATION.		CME	orgy Co		
Address:	airie.		550 No	orth 31st Street Su	nergy Co.		7 (See 1) See 1) S
_	Billin	ngs	State:	Montana	1	Zip Code:	59103
City:	DIIIII	USA		Phone Numb	205:	4068698706	39103
Country:	INICORN			Phone Num	Jei	4000030700	
FACILITY		IATION:		t in the		or and more of pain	
acility Nan		E 111		5-18-19 1FH and G	ood Medicine Fed	d 4075-18-19-1SH	HE !!! . 3H .= 1.1
New Facility		g Facility:	New				
Facility Des		D.4:			roduction Facility	Marie Colorado de	<u> </u>
Facility Clas		Minor	1 6	Operating Sta	tus: Operating	riller A - verification	
Facility Type	e:	Pr	oduction Site				
	D / .	6'1 0011)					
		ion Sites ONLY		om. F/C/4F	md 4/24/15		
			te of Modification		nd 4/24/15		
250		is facility cont	ain H25?"	No			
*If yes, con		vision.		40,000,00	274 40 000 2	0270	
API Numbe	r(s):			49-009-29	371 and 49-009-2	9370	
NAICS Code	. 1		2.	L1111 Crude Petro	loum and Natural	Cas Extraction	V2 100 1 10 10 10
		201-		titit Crude Petro	leum and Natural	Gas Extraction	
FACILITY			thip is fortely as full as full as	Raybogs of Tiff of	pring(CR) should	OCTOR his religion of read	
		n in either the la	atitude/longitude	area or section/tow	nship/range area. B	oth are not required.	
Physical Ad	dress:			6.1			WISA Lower
City:				p Code:			
	WY		County:				
<u>OR</u>						3 (8/17)	Library Tex
Latitude:	43.44	463	Longitude:	-105.91353		County: (Converse
Quarter Qu	arter:	NW		Quarter:	NW	1	ri gaelorii Sella
Section:	18	3	Township:	40N		Range:	75W
For	longitude	and latitude, i	use NAD 83/WO	SS84 datum and 5	digits after the d	ecimal (i.e. 41.12345, -10	07.56789)
CONTAC	T INFORI	MATION:					
*Note that an E	nvironmental	AND NSR Permittin	ng Contact is required	for your application to b	e deemed complete by	the agency.	
	Mr.		First Name:		Luke		
Last Name:		ļ	Studer			——————————————————————————————————————	
Company N		lastinas 11	- Court	SM F	nergy Co		
Job Title:	hébir de	no tarmetri i	Destination of the	Sr. EHS Spec		and the same of the same of the	Same prints
Address:	14 14	Like Tell Co. In	5	50 North 31st Stre		The figure in the last	
City:		Billings		tate:	Mont	ana	OT LUCIAL WIND
Zip Code:		D			Wiolit	чич	
Primary P		406-86	9-8706	F_n	nail:	lstuder@sm-energy.co	am.
	hone No.:	400-00	3 3700	Fax		istude estil-chergy.co	2111
Contact Typ		Environmer	ntal contact	Start D			0 1/10
Contact Typ		Liiviioiiiilei	ital contact	Start D	u.c.		

Additional Contact Ty	pe (if needed):	NSR Permitti	ing contact		
Title: Ms.	First Name:	-		Lynn	
Last Name:	Olson				
Company Name:			Trihydr	о Со	
Job Title:			Air Scientist		
Address:		2876	69 Edward View		
City:	Highland	State:		California	
Zip Code: 92346					
Primary Phone No.:	(307) 633-9506		E-mail:	lolson@trihydro.com	
Mobile Phone No.:			Fax No.:		
Contact Type:	NSR Permitting conta	ct	Start Date:		
FACILITY APPLICA	ATION INFORMATI	ON:			
General Info:					
Has the facility change	ed location or is it a new	/ greenfield	facility?		Yes
Has a Land Use Planni	ng document been inclu	ded in this a	pplication?		No
Is the facility located i	n a sage grouse core are	ea?*			No
	ge grouse core area, wh				
* For questions about	sage grouse core area,	contact WY (Game & Fish De	partment.	
	plicability - Facility				
Prevention of Significa	ant Deterioration (PSD):				No
Non-Attainment New					No
Modeling Section	n:				
	vision been contacted to	determine i	if modeling is re	quired?	No
	part of this application?		ii modeliig is re	quii cui	No
is a modeling analysis	part or this application				
Is the proposed project	ct subject to Prevention	of Significan	t Deterioration	(PSD) requirements?	No
	vision been notified to s				No
	col been submitted to a				No
				ective FLMs to determine	
the need for an AQRV		417515 10 545			No
Required Attach					
	<u>inients.</u> ✓				
Facility Map					
Process Flow Diagram	18 C 19 C				
Modeling Analysis (if					
Land Use Planning Do					
Detailed Project Desc					
Emissions Calculation	s 🛂				
	Lules Chu	ما م به		Cr E∐C 0	pecialist
١,	Luke Stu Responsible Official		201		tle
	Responsible Official	Printed Nan	ie)		tie .
				C + C + - +	h and that the same
an Official Representa	ative of the Company, st	ate that I hav	ve knowledge of	f the facts herein set fort	n and that the same
are true and correct t	o the best of my knowle	dge and beli	ef. I further cer	tify that the operational	information provided
and emission rates lis	ted on this application r	eflect the an	ticipated emissi	ons due to the operation	of this facility. The
facility will operate in	compliance with all app	olicable Wyor	ming Air Quality	Standards and Regulation	ons.
				5 .	
Signature:				– Date	z
	(ink)				

SITE SECURITY DIAGRAM:

WELL NO: GOOD MEDICINE FED 4075-18-19-1SH

PAINT FED 4075-18-19-1FH

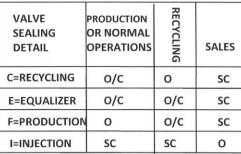
STATE NO: ST 10-008485;ST 10-00455; WYW173999

FIELD NAME: FINLEY DRAW FIELD

LOCATION: G.M. FED-NWNW SEC 18-T40N-R75W

PAINT FED-NENW SEC 18-T40N-R75W

COUNTY: CONVERSE


STATE: WY

SITE FACILITY PLAN LOCATED

AT:


SM ENERGY CO 550 N 31ST ST. SUITE 500

BILLINGS, MT 59103

WHERE: O - OPEN, SO - SEALED OPEN, C - CLOSED, SC - SEALED CLOSED,

Entrance

THE TANK

STATE OF WYOMING

Department of Environmental Quality - Air Quality Division Oil and Gas Production Facilities C6 S2 Permit Application

Equipment List

Company Name	SM Energy
Facility Name	Paint Fed 4075-18-19 1FH and Good Medicine Fed 4075-18-19-1SH
,	
produced water storage tanks, a control equipment and devices. atmosphere during times other t gun barrels, scrubber pots, etc). Provide size of production & wa	the site including all pressurized vessels with the potential for flash emissions, all hydrocarbon liquids and all dehydration units, all pneumatic pumps, all natural gas-fired burners and heaters and all emission. Pressurized vessels with the potential for flash emissions are all vessels that vent vapors to the than upset or emergency conditions (water knockouts, 2-phase and 3-phase separators, heater treaters, Provide design ratings for dehys (MMCFD), process heaters, burners and pilots (MMBtu/hr, SCFH). Iter storage tanks (BPD). For dehydration units indicate if the unit includes a glycol flash separator and/or or emission control combustors/flares indicate design rating (MMBtu/hr, SCFD) and combustor/flare height notive gas usage (SCFH).
4 400-bbl water tank	
16 400-bbl oil tanks (contro	
2 6'x20' vertical treater with	
2 small recycle pumps, les	
	with a low pressure tip for tank vapors and higher pressure for emergencies when
produced gas cannot go to	
	al generators (100 to 272 hp) - application submitted separately.
1 electric LACT unit not op	erated by SME
FORM AQD-OG2 Equipme	ent List AUGUST 2007

SM ENERGY GOOD MED/PAINT FUGITIVE EMISSIONS

		0	Component Source Counts	ounts	
Equipment Type Storage Tank	Storage Tank	Wellhead	Separator	Heater-treater	Header
Number of units	20	2	0	2	2
Valves	9	2	9	8	5
Flanges	4	10	12	12	10
Connectors	20	4	10	20	4
Open-ended lines	2	0	0	0	0
Other components	2	1	0	0	0

			A STATE OF THE PARTY OF THE PAR	Emissions		
Total Component Count	nent Count	Hydrocarbon EF (Ib/component-day)	тру нс	HC VOC Wt. Fraction	TPY VOCs	
Valves	156	0.13	3.70	1		3.70
Flanges	144	0.0058	0.15	1		0.15
Connectors	456	0.011	0.92	1		0.92
Open-ended lines	40	0.074	0.54	1		0.54
Other components	42	0.4	3.07	1		3.07
Total	838		8.38			8.38

Total HCs =	8.38 TPY
Total VOC's =	8.38 TPY
Total VOC's =	1.91 lb/hr
Total HAPs =	0.32 TPY
Total HAPs =	0.07 lb/hr

- Component counts were derived from Table W-1C of Subpart W (Oil and Natural Gas Systems) of 40 CFR
- Part 98 for Western U.S. oil production equipment for wellheads and heater treater. Tank components are based on engineering estimates.
 - Emission Factors (in Ib/component-day) from Wyoming Air Quality Division Oil and Gas Permitting Guidance, 2007 - Light Oil VOC Weight fraction assumed to be 1.0 to be conservative
- To be conservative, all Speciated Fugitive Emission Factors (Wt Fractions) from light crude Wyoming Air Quality Division Oil and Gas Permitting Guidance, 2007 (HAP Fraction of Hydrocarbon Emissions 0.2585)
 - Total HAPs calculated by multiplying Total HCs in TPY by weight fraction HAPs

SM ENERGY GOOD MED/PAINT CONTROLLED TANK EMISSIONS

Paint Fed CO and NOx Emissions From Combustion of Tank Vapors Emission Factor Throughput Controlled Emissions Compound Emission Factor Source MMBtu/yr (TPY) (lb/MMBtu) 3.503 AP-42 Table 13.5-1 18,933 0.37 NO_x 0.14 18,933 1.325 AP-42 Table 13.5-1

HC Vapor emissions (MSCFD) = 29.1800 Gas Heat Content (Btu/SCF) = 1,777.60 Annual heat throughput (Btu/yr) = 18,932,684,320

	VOC and HAPs E	missions From Cor	nbustion of Tank Vapors	
Compound	Throughput (TPY)	Burner Control Efficiency (%)	Controlled Emissions (TPY)	Emission Factor Source
VOC	240.70	98	4.814	WY Oil and Gas Guidance -2010

Emissions are based on 98% control efficiency.

HAPs

Production values put in E&P Tanks is incorporating a decline factor of 40% to account for the decrease in production during the first year

98

Good Medicine

0.129

WY Oil and Gas Guidance -2010

	CO and NOx Em	issions From Com	bustion of Tank Vapors	
Compound	Emission Factor (lb/MMBtu)	Throughput MMBtu/yr	Controlled Emissions (TPY)	Emission Factor Source
co	0.37	14,849	2.747	AP-42 Table 13.5-1
NO _v	0.14	14,849	1.039	AP-42 Table 13.5-1

HC Vapor emissions (MSCFD) = Gas Heat Content (Btu/SCF) = Annual heat throughput (Btu/yr) =

16.4600 2,471.66 14,849,486,114

6.45

VOC and HAPs Emissions From Combustion of Tank Vapors **Burner Control** Controlled Emissions Emission Factor Source Throughput (TPY) Compound (TPY) Efficiency (%) 5.809 WY Oil and Gas Guidance -2010 290.45 VOC 98 WY Oil and Gas Guidance -2010 HAPs 5.78 98 0.116

Emissions are based on 98% control efficiency.

Production values put in E&P Tanks is incorporating a decline factor of 40% to account for the decrease in production during the first year

```
*************************
* Project Setup Information
******************
Project File & : \tsclient \tyle= \
Flowsheet Selection : Oil Tank with Separator
Calculation Method : RVP Distillation
Control Efficiency : 98.0%
Known Separator Stream : Low Pressure Oil
Entering Air Composition: No
Filed Name
                          : SM Energy GoodMed Painter- Wibaux sample
Well Name
                           : Combined
Date
                      : 2015.06.08
**************************
 * Data Input
 Separator Pressure : 74.00[psig]
Separator Temperature : 128.00[F]
Ambient Pressure : 12.50[psia]
Ambient Temperature : 60.00[F]
                : 0.83253
C10+ SG
C10+ MW
-- Low Pressure Oil -----
  No. Component mol %
  1 H2S 0.0000
                 0.0000
0.0547
0.0321
2.9888
1.4921
  2 02
  3 CO2
  5 C1
  6 C2
  7 C3
                          2.5865
  8 i-C4
                           0.6706
  9
        n-C4
                             2.7010
  10 i-C5
                            1 7761
  11 n-C5
                           2.4760
  12 C6
                            2.3990
  13 C7
                          6.3990
  14 C8
                          7.7450
                           3.4791
  15 C9
  16 C10+
                            57.2278
  17 Benzene
                             0.2263
                               1.9541
  18 Toluene
  19 E-Benzene
                                 1.0125
  20 Xylenes 1.5235
21 n-C6 2.2034
                               1.5235
  22 224Trimethylp 1.0613
 -- Sales Oil -----
 Production Rate : 647[bbl/day]
 Days of Annual Operation : 365 [days/year]
 API Gravity : 41.4
 Reid Vapor Pressure : 9.20[psia]
 ************************
 -- Emission Summary -----
 Item Uncontrolled Uncontrolled Controlled Controlled
                [ton/yr] [lb/hr] [ton/yr] [lb/hr]
 Total HAPs 6.450 1.473 0.129 0.029
 Page 1----- E&P TANK
 Total HC 427.033 97.496 8.541 1.950
 VOCs, C2+ 317.860 72.571 6.357
VOCs, C3+ 240.691 54.952 4.814
                                                                       1.451
                                                                       1.099
 Uncontrolled Recovery Info.
      Vapor 29.1800 [MSCFD]
```

HC Vapor 28.8000 [MSCFD] GOR 45.10 [SCF/bbl]

```
-- Emission Composition -----
No Component Uncontrolled Uncontrolled Controlled Controlled
        [ton/yr] [lb/hr] [ton/yr] [lb/hr]
1 H2S
          0.000
                  0.000
                          0.000
                                   0.000
2 02
          0.000
                  0.000
                           0.000
                                   0.000
          4.750 1.084
                          4 750
3 CO2
                                   1 084
4 N2
          2.147
                  0.490
                          2.147
                                    0.490
          109.173 24.925 2.183
5 C1
                                   0.499
6 C2
          77.169 17.618 1.543
                                     0.352
          110.692 25.272
18.844 4.302
7 C3
                            2.214
                                    0.505
8 i-C4
                           0.377
                                    0.086
9 n-C4
          54.711 12.491 1.094
                                    0.250
          17.840 4.073 0.357
18.086 4.129 0.362
10 i-C5
                                     0.081
11 n-C5
                                    0.083
12 C6
          5.661 1.292
                          0.113
                                    0.026
          5.562 1.270
                          0.111
                                    0.025
13 C7
          2.321
                  0.530
                           0.046
                                    0.011
14 C8
          0.380 0.087 0.008
15 C9
                                    0.002
16 C10+
         0.145 0.033 0.003
                                    0.001
17 Benzene 0.304
18 Toluene 0.817
                    0.069
                             0.006
                                     0.001
                    0.187
                             0.016
                                      0.004
19 E-Benzene 0.153 0.035 0.003 0.001
20 Xylenes 0.198 0.045 0.004 0.001
21 n-C6 4.080 0.932 0.082 0.019
22 224Trimethylp 0.896 0.205 0.018 0.004
 Total 433.929 99.071 8.679 1.981
-- Stream Data -----
No. Component MW LP Oil Flash Oil Sale Oil Flash Gas W&S Gas Total Emissions
              mol % mol % mol % mol % mol %
1 H2S
             34.80 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
            32.00 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
3 CO2
            44.01 0.0547 0.0109 0.0109 0.7682 0.0000 0.7682
4 N2
            28.01 0.0321 0.0006 0.0006 0.5454 0.0000 0.5454
5 C1
            16.04 2.9888 0.1987 0.1987 48.4332 0.0000 48.4332
            30.07 1.4921 0.4623 0.4623 18.2651 0.0000 18.2651
6 C2
7 C3
            44.10 2.5865 1.6483 1.6483 17.8658 0.0000 17.8658
8 i-C4
            58.12  0.6706  0.5701  0.5701  2.3074  0.0000  2.3074
9 n-C4
           58.12 2.7010 2.4553 2.4553 6.6993 0.0000 6.6993
            72.15 1.7761 1.7769 1.7769 1.7598 0.0000 1.7598
10 i-C5
            72.15 2.4760 2.5182 2.5182 1.7841 0.0000 1.7841
11 n-C5
12 C6
             86.16 2.3990 2.5166 2.5166 0.4797 0.0000 0.4797
13 C7
            100.20 6.3990 6.7662 6.7662 0.4081 0.0000 0.4081
14 C8
            114.23 7.7450 8.2106 8.2106 0.1488 0.0000 0.1488
           128.28 3.4791 3.6910 3.6910 0.0220 0.0000 0.0220
15 C9
            174.58 57.2278 60.7352 60.7352 0.0059 0.0000 0.0059
16 C10+
17 Benzene
              78.11 0.2263 0.2385 0.2385 0.0277 0.0000 0.0277
           92.13 1.9541 2.0700 2.0700 0.0631 0.0000 0.0631
18 Toluene
19 E-Benzene 106.17 1.0125 1.0739 1.0739 0.0102 0.0000 0.0102
20 Xylenes
21 n-C6
              106.17 1.5235 1.6161 1.6161 0.0133 0.0000 0.0133
             86.18 2.2034 2.3178 2.3178 0.3370 0.0000 0.3370
22 224Trimethylp 114.24 1.0613 1.1229 1.1229 0.0558 0.0000 0.0558
                136.15 142.61 142.61 30.88 0.00 30.88
  Stream Mole Ratio 1.0000 0.9422 0.9422 0.0578 0.0000 0.0578
  Heating Value [BTU/SCF] 1777.59 0.00 1777.59
```

1.07 0.00 1.07

Gas Gravity [Gas/Air]

Bubble Pt. @ 100F [psia] 133.84 18.03 18.03 RVP @ 100F [psia] 27.46 8.50 8.50

NSR Application A0001212 Paint Fed 4075-18-19 & Good Medicine Fed 4075-18-19-1SH F026690 July 07, 2015

If I am claiming any information in this submission is a trade secret, I hereby swear or affirm that the trade secret request meets the requirements of Wyoming Air Quality Standards and Regulations and that the justification submitted with the trade secret request sets forth the basis for claiming that the information should be considered a trade secret as defined in Wyoming Air Quality Standards and Regulations.

a) I am the Authorized Representative identified in applicable Wyoming Air Quality Standards and Regulations as authorized to sign this document; and

b) Based on information and belief formed after reasonable inquiry, I hereby affirm that all factual statements in this transmittal are true, accurate and complete to the best of my knowledge and that all judgments and estimates have been made in good faith.

Account: rcedel

Date/time submitted: Jul 7 2015, 10:19:38

Air Quality Division Application for NSR Permit

- NSR Application

This information should be filled out for each New Source Review (NSR) application. An NSR permit is required for all air contaminant sources (emissions units) installed or modified after January 1, 1974. See the application instructions for additional information.

Purpose of Application

Please summarize the reason this permit is being applied for.

The Paint Fed and Good Medicine Fed are a new oil and gas production facility located in Converse County, Wyoming. To comply with permitting requirements, SM Energy respectfully submits this application. Please contact us with any questions. Thank you.

Has the facility changed location or is it a new/greenfield facility? Yes Has a Land Use Planning document been included in this application? No Does production at this facility contain H2S? No

Federal Rules Applicability - Facility Level

Prevention of Significant Deterioration (PSD)

Not affected

These rules are found under WAQSR Chapter 6, Section 4.

apter o, cooner r.

Non-Attainment New Source Review

Not affected

These rules are found under WAQSR Chapter 6, Section 13

Trade Secret Information - One or more Emissions Units in this application contains trade secret information.

No

 Permit Application Contact - Newly created contacts and application contact changes will be saved when the application is saved.

Luke Studer	Senior EHS Specialist	SM Energy Company		
Name	Title	Company		
PO Box 7168	Billings, MT	59103		
Street Address	City/Township, State	Zip Code		
(406) 869-8706		lstuder@sm-energy.com		
Phone	Fax	E-mail		

Modeling Section

Ambient Air Quality Impact Analysis: WAQSR Chapter 6, Section 2(c)(ii) requires that permit applicants demonstrate that a proposed facility will not prevent the attainment or maintenance of any ambient air quality standard.

Has the applicant contacted AQD to determine if modeling is required? No

Is a modeling analysis part of this application? No

Is the proposed project subject to Prevention of Significant Deterioration (PSD) No requirements?

Application Attachments

Required Attachment	Public Document Id	Attachment Type	Description		
Х	6197	Process Flow Diagram	Process Diagram		
Х	6198	Emissions Calculations	Emissions Calculations		
Х	6199	Cover Letter/Project	Cover Letter and Project		

		Description	Description	
X	6200	Equipment List	Equipment List	
Х	6201	Facility Map	Facility Diagram	

AQD EU ID: ENG002

AQD EU description: one (1) natural

gas fired generator no larger than 272

hp.

Company EU ID: NG Engines

Company EU Description: one (1) natural

Units: Btu/scf

gas fired generator no larger than 272

hp.

- Source Installation or Modification Schedule – Select reason(s) for this emissions unit being included in this application (must be completed regardless of date of installation or modification):

Construction(greenfield/new facility)

Date production began:

04/24/2015

- Emission Unit Type Specific Information

Emission Unit Type: Engine

Btu Content: 1,300.00

Fuel Sulfur Content: 0.00 Units: ppm

Type of Service : Generator

- Potential Operating Schedule - Provide the operating schedule for this emissions unit

Hours/day: 24 Hours/year: 8760

Emissions Information "Potential to emit" means the maximum capacity of a source to emit any air pollutant under its physical and operational design. Any physical or operational limitation on the capacity of a source to emit an air pollutant, including air pollution control equipment and restrictions on hours of operation or on the type or amount of material combusted, stored or processed, shall be treated as part of its design if the limitation is enforceable by the EPA and the Division. This term does not alter or affect the use of this term for any other purposes under the Act, or the term "capacity factor" as used in Title IV of the Act or the regulations promulgated thereunder.

Basis for Determination Options:

- Manufacturer Data
- Test results for this source
- Similar source test results
- GRICalc
- Tanks Program
- AP-42
- Other. If this is selected, attach a document with a description of the method used.

Criteria Pollutants:

Pollutant	Pre-	Efficiency	Standards	Emit (PTE) Emit (PT	Potential to	Basis for Determinatio n*
	Controlled Potential Emissions (tons/yr)	Potential to Emit (PTE)*	Units*		(tons/yr)*	
Particulate emissions	0	0		0	0	

(PE/PM) (formerly particulate matter, PM)						
PM # 10 microns in diameter (PE/PM10)	0	0		0	0	
PM # 2.5 microns in diameter (PE/PM2.5)	0	0	11/4 4000	0	0	a trocusió ansiellos
Sulfur dioxide (SO2)	0	0		0	0	1/8:22:4/
Nitrogen oxides (NOx)	0	0.7	gr/hp-hr	0.254	1.114	Manufactur er Data
Carbon monoxide (CO)	0	0.5	gr/hp-hr	0.182	0.796	Manufactur er Data
Volatile organic compounds (VOC)	0	0.5	gr/hp-hr	0.182	0.796	Manufactur er Data
Lead (Pb)	0	0		0	0	
Total Hazardous Air Pollutants (HAPs)	0	0	4.00 mm	0	0	
Fluoride (F)	0	0		0	0	N
Hydrogen Sulfide (H2S)	0	0	1030	0	0	Probable
Mercury (Hg)	0	0		0	0	2/12/22/21/1
Total Reduced Sulfur (TRS)	0	0		0	0	aettik-nog
Sulfuric Acid Mist (SAM)	0	0		0	0	

Pollutant	Pollutant					Potential to	
	Category	Controlled Potential Emissions (tons/yr)	Potential to Emit (PTE)*	Units*			Determinati on*

Greenhouse Gases (GHGs):

Pollutant	Pollutant	Pre-	Efficiency	Standards	Potential to		
	Category	Controlled Potential Emissions (tons/yr)	Potential to Emit (PTE)*	Units*	Emit (PTE) (Ibs/hr)*	Emit (PTE) (tons/yr)*	Determinati on*

^{*} Provide your calculations as an attachment and explain how all process variables and emissions factors were selected. Note the emission factor(s) employed and document origin. Example: AP-42, Table 4.4-3 (8/97); stack test, Method 5, 4/96; mass balance based on MSDS; etc.

- Best Available Control Technology (BACT)

Was a BACT Analysis completed for this unit? $\,{\tt No}$

Lowest Achievable Emission Rate (LAER)

Was a LAER Analysis completed for this unit? No

- Federal and State Rule Applicability

New Source Performance Standards (NSPS) New Source Performance Standards are listed under 40 CFR 60 - Standards of Performance for New Stationary Sources. Subject to subpart

^{**} AQD Calculated - See 'Help' for more information.

NSPS Subpart

JJJJ - Stationary Spark Ignition Internal Combustion Engine

National Emission Standards for Hazardous Air Pollutants (NESHAP Part 61)

Not affected

National Emissions Standards for Hazardous Air Pollutants (NESHAP Part 61) are listed under 40 CFR 61. (These include asbestos, benzene, beryllium, mercury, and vinyl chloride).

National Emission Standards for Hazardous Air Pollutants (NESHAP Part 63)

Subject to subpart

National Emission Standards for Hazardous Air Pollutants (NESHAP Part 63) standards are listed under 40 CFR 63.

Part 63 NESHAP Subpart

ZZZZ - Reciprocating Internal Combustion Engines

Prevention of Significant Deterioration (PSD)

Not Affected

These rules are found under WAQSR Chapter 6, Section 4.

Not Affected

Non-Attainment New Source Review
These rules are found under WAQSR Chapter 6, Section

- Emission Unit Attachments

Required Attachment	Public Document	Attachment Type	Description

AQD EU ID: HET001

AQD EU description:

Company EU ID: Paint HTH

Company EU Description: Paint Fed Heater

treater heater

- Source Installation or Modification Schedule – Select reason(s) for this emissions unit being included in this application (must be completed regardless of date of installation or modification):

Construction(greenfield/new facility)

Date production began:

05/06/2015

- Emission Unit Type Specific Information

Emission Unit Type: Heater/Chiller

Fuel Sulfur Content: 0.00 Units: ppm

- Potential Operating Schedule - Provide the operating schedule for this emissions unit

Hours/day: 24 Hours/year: 8760

- Emissions Information "Potential to emit" means the maximum capacity of a source to emit any air pollutant under its physical and operational design. Any physical or operational limitation on the capacity of a source to emit an air pollutant, including air pollution control equipment and restrictions on hours of operation or on the type or amount of material combusted, stored or processed, shall be treated as part of its design if the limitation is enforceable by the EPA and the Division. This term does not alter or affect the use of this term for any other purposes under the Act, or the term "capacity factor" as used in Title IV of the Act or the regulations promulgated thereunder.

Basis for Determination Options:

- Manufacturer Data
- Test results for this source
- Similar source test results
- GRICalc
- Tanks Program
- AP-42
- Other. If this is selected, attach a document with a description of the method used.

Criteria Pollutants :

Pollutant	Pre-	Efficiency	Standards	Potential to	Potential to	Basis for
	Controlled Potential to Emitssions (tons/yr)		Units*	Emit (PTE) (Ibs/hr)*	Emit (PTE) (tons/yr)*	Determinatio n*
Particulate emissions (PE/PM) (formerly particulate matter, PM)	0	0	n werth	0	0	
PM # 10 microns in diameter (PE/PM10)	0	0		0	0	
PM # 2.5 microns in diameter (PE/PM2.5)	0	0		0	0	
Sulfur dioxide (SO2)	0	0		0	0	10.4 53

Nitrogen oxides (NOx)	0	0.1	lb/MMBtu	0.074	0.322	AP-42
Carbon monoxide (CO)	0	0.07	lb/MMBtu	0.062	0.271	AP-42
Volatile organic compounds (VOC)	0	0.01	lb/MMBtu	0.004	0.018	AP-42
Lead (Pb)	0	0		0	0	
Total Hazardous Air Pollutants (HAPs)	0	0		0.001	0.006	AP-42
Fluoride (F)	0	0		0	0	
Hydrogen Sulfide (H2S)	0	0		0	0	
Mercury (Hg)	0	0		0	0	
Total Reduced Sulfur (TRS)	0	0		0	0	
Sulfuric Acid Mist (SAM)	0	0		0	0	

Pollutant	Pollutant	Pre-	Efficiency	Standards	Potential to		
	Category	Controlled Potential Emissions (tons/yr)	Potential to Emit (PTE)*	Units*	(lbs/hr)*	(tons/yr)*	Determinati on*

Greenhouse Gases (GHGs):

Pollutant	Pollutant Category	Pre- Controlled Potential Emissions (tons/yr)	Efficiency Potential to Emit (PTE)*	Units*	Potential to Emit (PTE) (lbs/hr)*		Basis for Determinati on*
-----------	-----------------------	---	---	--------	---	--	---------------------------------

^{*} Provide your calculations as an attachment and explain how all process variables and emissions factors were selected. Note the emission factor(s) employed and document origin. Example: AP-42, Table 4.4-3 (8/97); stack test, Method 5, 4/96; mass balance based on MSDS; etc.

Best Available Control Technology (BACT)

Was a BACT Analysis completed for this unit? No

Lowest Achievable Emission Rate (LAER)

Was a LAER Analysis completed for this unit? No

- Federal and State Rule Applicability

New Source Performance Standards (NSPS)
New Source Performance Standards are listed under 40
CFR 60 - Standards of Performance for New Stationary
Sources.

Not affected

National Emission Standards for Hazardous Air Pollutants (NESHAP Part 61)

National Emissions Standards for Hazardous Air Pollutants (NESHAP Part 61) are listed under 40 CFR 61. (These include asbestos, benzene, beryllium, mercury, and vinyl chloride).

Not affected

National Emission Standards for Hazardous Air Pollutants (NESHAP Part 63)

Not affected

^{**} AQD Calculated - See 'Help' for more information.

National Emission Standards for Hazardous Air Pollutants (NESHAP Part 63) standards are listed under 40 CFR 63.

Prevention of Significant Deterioration (PSD)
These rules are found under WAQSR Chapter 6, Section 4.

Non-Attainment New Source Review

These rules are found under WAQSR Chapter 6, Section 13.

Not Affected

Not Affected

Emission Unit Attachments

Required Attachment	Public Document Id	Attachment Type	Description
------------------------	-----------------------	-----------------	-------------

AQD EU ID: HET002

AQD EU description:

Company EU ID: GM HTH

Company EU Description: Good Med Heater

Treater Heater

- Source Installation or Modification Schedule – Select reason(s) for this emissions unit being included in this application (must be completed regardless of date of installation or modification):

Construction(greenfield/new facility)

Date production began:

04/24/2015

- Emission Unit Type Specific Information

Emission Unit Type: Heater/Chiller

Fuel Sulfur Content: 0.00 Units: ppm

- Potential Operating Schedule - Provide the operating schedule for this emissions unit

Hours/day: 24 Hours/year: 8760

Emissions Information "Potential to emit" means the maximum capacity of a source to emit any air pollutant under its physical and operational design. Any physical or operational limitation on the capacity of a source to emit an air pollutant, including air pollution control equipment and restrictions on hours of operation or on the type or amount of material combusted, stored or processed, shall be treated as part of its design if the limitation is enforceable by the EPA and the Division. This term does not alter or affect the use of this term for any other purposes under the Act, or the term "capacity factor" as used in Title IV of the Act or the regulations promulgated thereunder.

Basis for Determination Options:

- Manufacturer Data
- Test results for this source
- Similar source test results
- GRICalc
- Tanks Program
- AP-42
- Other. If this is selected, attach a document with a description of the method used.

Criteria Pollutants:

Pollutant	Pre-	Efficiency	Standards	Potential to	Potential to	Basis for
	Controlled Potential Emissions (tons/yr)	Potential to Emit (PTE)*	Units*	Emit (PTE) (lbs/hr)*	Emit (PTE) (tons/yr)*	Determinatio n*
Particulate emissions (PE/PM) (formerly particulate matter, PM)	0	0		0	0	
PM # 10 microns in diameter (PE/PM10)	0	0		0	0	
PM # 2.5 microns in diameter (PE/PM2.5)	0	0		0	0	
Sulfur dioxide (SO2)	0	0	lb/MMBtu	0	0.002	AP-42

Nitrogen oxides (NOx)	0	0.1	lb/MMBtu	0.074	0.322	AP-42
Carbon monoxide (CO)	0	0.08	lb/MMBtu	0.062	0.271	AP-42
Volatile organic compounds (VOC)	0	0.01	lb/MMBtu	0.004	0.018	AP-42
Lead (Pb)	0	0		0	0	
Total Hazardous Air Pollutants (HAPs)	0	0	nothing or	0.001	0.006	AP-42
Fluoride (F)	0	0		0	0	
Hydrogen Sulfide (H2S)	0	0		0	0	U flow into
Mercury (Hg)	0	0	1 SENT	0	0	Lipor)
Total Reduced Sulfur (TRS)	0	0		0	0	6 ceres
Sulfuric Acid Mist (SAM)	0	0		0	0	

ſ	Pollutant	Pollutant	Pre-	Efficiency	Standards	Potential to		
		Category	Controlled Potential Emissions	Potential to Emit (PTE)*		(lbs/hr)*	(tons/yr)*	Determinati on*
1			(tons/yr)					

Greenhouse Gases (GHGs):

Pollutant	Pollutant	Pre-	Efficiency	Standards		Potential to	
	Category	Controlled Potential Emissions (tons/yr)	Potential to Emit (PTE)*	Units*	(lbs/hr)*	(tons/yr)*	Determinati on*

^{*} Provide your calculations as an attachment and explain how all process variables and emissions factors were selected. Note the emission factor(s) employed and document origin. Example: AP-42, Table 4.4-3 (8/97); stack test, Method 5, 4/96; mass balance based on MSDS; etc.

- Best Available Control Technology (BACT)

Was a BACT Analysis completed for this unit? No

Lowest Achievable Emission Rate (LAER)

Was a LAER Analysis completed for this unit? $\,\mathbb{N}\circ$

- Federal and State Rule Applicability

New Source Performance Standards (NSPS) New Source Performance Standards are listed under 40 CFR 60 - Standards of Performance for New Stationary Sources. Not affected

National Emission Standards for Hazardous Air Pollutants (NESHAP Part 61)

National Emissions Standards for Hazardous Air Pollutants (NESHAP Part 61) are listed under 40 CFR 61. (These include asbestos, benzene, beryllium, mercury, and vinyl chloride).

Not affected

National Emission Standards for Hazardous Air Pollutants (NESHAP Part 63)

Not affected

^{**} AQD Calculated - See 'Help' for more information.

National Emission Standards for Hazardous Air Pollutants (NESHAP Part 63) standards are listed under 40 CFR 63.

Not Affected

Prevention of Significant Deterioration (PSD)
These rules are found under WAQSR Chapter 6, Section 4.

Not Affected

Non-Attainment New Source Review
These rules are found under WAQSR Chapter 6, Section 13.

Emission Unit Attachments

Required Public Docum	ent Attachment Type	Description
-----------------------	---------------------	-------------

AQD EU ID: TNK001

AQD EU description:

Company EU ID: Paint Oil

Company EU Description: Paint Fed Oil

Tanks Crude 1-8

- Source Installation or Modification Schedule – Select reason(s) for this emissions unit being included in this application (must be completed regardless of date of installation or modification):

Construction(greenfield/new facility)

Date production began:

05/06/2015

- Emission Unit Type Specific Information

Emission Unit Type: Storage Tank/Silo

Maximum Hourly Throughput 54.0000

Units: barrels/hr

Is Tank Heated: No

Operating Pressure (psig): 14.00

Vapor Pressure of Material 9.00 Stored (psig):

- Potential Operating Schedule - Provide the operating schedule for this emissions unit

Hours/day: 24 Hours/year: 8760

- Emissions Information "Potential to emit" means the maximum capacity of a source to emit any air pollutant under its physical and operational design. Any physical or operational limitation on the capacity of a source to emit an air pollutant, including air pollution control equipment and restrictions on hours of operation or on the type or amount of material combusted, stored or processed, shall be treated as part of its design if the limitation is enforceable by the EPA and the Division. This term does not alter or affect the use of this term for any other purposes under the Act, or the term "capacity factor" as used in Title IV of the Act or the regulations promulgated thereunder.

Basis for Determination Options:

- Manufacturer Data
- Test results for this source
- Similar source test results
- GRICalc
- Tanks Program
- AP-42
- Other. If this is selected, attach a document with a description of the method used.

Criteria Pollutants :

Pollutant	Pre-	Efficiency	Standards	Potential to	Potential to	Basis for Determinatio n*
	Controlled Potential Emissions (tons/yr)	Potential to Emit (PTE)*	Units*	Emit (PTE) (Ibs/hr)*	Emit (PTE) (tons/yr)*	
Particulate emissions (PE/PM) (formerly particulate matter, PM)	0	0		0	0	Tomber of County (1979
PM # 10 microns in	0	0		0	0	A Marine and the

diameter (PE/PM10)						
PM # 2.5 microns in diameter (PE/PM2.5)	0	0		0	0	
Sulfur dioxide (SO2)	0	0		0	0	
Nitrogen oxides (NOx)	0	0.14	lb/MMBtu	0.3	1.33	AP-42
Carbon monoxide (CO)	0	0.37	lb/MMBtu	0.8	3.5	AP-42
Volatile organic compounds (VOC)	240.7	0		1.1	4.81	Other
Lead (Pb)	0	0		0	0	
Total Hazardous Air Pollutants (HAPs)	6.45	0		0.03	0.13	Other
Fluoride (F)	0	0		0	0	
Hydrogen Sulfide (H2S)	0	0		0	0	
Mercury (Hg)	0	0		0	0	
Total Reduced Sulfur (TRS)	0	0		0	0	
Sulfuric Acid Mist (SAM)	0	0		0	0	

	Pre- Controlled Potential Emissions (tons/yr)	Potential to Emit (PTE)*	Standards Units*	Potential to Emit (PTE) (lbs/hr)*		Basis for Determinati on*
--	---	--------------------------	---------------------	---	--	---------------------------------

Greenhouse Gases (GHGs):

Pollutant Pre- Category Controlle Potentia Emissio (tons/yi	Emit (PTE)*	Potential to Emit (PTE) (lbs/hr)* (tons/yr)*	Determinati
---	-------------	--	-------------

^{*} Provide your calculations as an attachment and explain how all process variables and emissions factors were selected. Note the emission factor(s) employed and document origin. Example: AP-42, Table 4.4-3 (8/97); stack test, Method 5, 4/96; mass balance based on MSDS; etc.

Best Available Control Technology (BACT)

Was a BACT Analysis completed for this unit? No

Lowest Achievable Emission Rate (LAER)

Was a LAER Analysis completed for this unit? No

- Federal and State Rule Applicability

New Source Performance Standards (NSPS)
New Source Performance Standards are listed under 40
CFR 60 - Standards of Performance for New Stationary
Sources.

Not affected

National Emission Standards for Hazardous Air Pollutants (NESHAP Part 61)

National Emissions Standards for Hazardous Air Pollutants (NESHAP Part 61) are listed under 40 CFR 61. (These Not affected

^{**} AQD Calculated - See 'Help' for more information.

include asbestos, benzene, beryllium, mercury, and vinyl chloride).

Not affected

National Emission Standards for Hazardous Air Pollutants (NESHAP Part 63) National Emission Standards for Hazardous Air Pollutants (NESHAP Part 63) standards are listed under 40 CFR 63.

Prevention of Significant Deterioration (PSD)
These rules are found under WAQSR Chapter 6, Section 4.

Not Affected

Non-Attainment New Source Review These rules are found under WAQSR Chapter 6, Section Not Affected

Emission Unit Attachments

Required Attachment	Public Document Id	Attachment Type	Description
------------------------	-----------------------	-----------------	-------------

AQD EU ID: TNK002

AQD EU description:

Company EU ID: GM Oil Tk

Company EU Description: Good Med Fed Crude

oil Tanks 1-8

- Source Installation or Modification Schedule – Select reason(s) for this emissions unit being included in this application (must be completed regardless of date of installation or modification):

Construction(greenfield/new facility)

Date production began:

04/24/2015

- Emission Unit Type Specific Information

Emission Unit Type: Storage Tank/Silo

Maximum Hourly Throughput 10.0000 Units: barrels/hr

Is Tank Heated: No

Operating Pressure (psig): 14.00 Vapor Pressure of Material 9.00 Stored (psig):

- Potential Operating Schedule - Provide the operating schedule for this emissions unit

Hours/day: 24 Hours/year: 8760

Emissions Information "Potential to emit" means the maximum capacity of a source to emit any air pollutant under its physical and operational design. Any physical or operational limitation on the capacity of a source to emit an air pollutant, including air pollution control equipment and restrictions on hours of operation or on the type or amount of material combusted, stored or processed, shall be treated as part of its design if the limitation is enforceable by the EPA and the Division. This term does not alter or affect the use of this term for any other purposes under the Act, or the term "capacity factor" as used in Title IV of the Act or the regulations promulgated thereunder.

Basis for Determination Options:

- Manufacturer Data
- Test results for this source
- Similar source test results
- GRICalc
- Tanks Program
- AP-42
- Other. If this is selected, attach a document with a description of the method used.

Criteria Pollutants :

Pollutant	Pre-	Efficiency Standards		Potential to	Potential to	Basis for
	Controlled Potential Emissions (tons/yr)	Potential to Emit (PTE)*	Units*	Emit (PTE) (lbs/hr)*	Emit (PTE) (tons/yr)*	Determinatio n*
Particulate emissions (PE/PM) (formerly particulate matter, PM)	0	0		0	0	
PM # 10 microns in	0	0		0	0	

diameter (PE/PM10)			British Bost For	2 (366 * W. N. 198)	n 11度 5 0 9 di 17 使1发;	de sevina
PM # 2.5 microns in diameter (PE/PM2.5)	0	0		0	0	, promo
Sulfur dioxide (SO2)	0	0	31-4 (2.1)	0	0	B herotela
Nitrogen oxides (NOx)	0	0.14	lb/MMBtu	0.24	1.04	AP-42
Carbon monoxide (CO)	0	0.37	lb/MMBtu	0.63	2.75	AP-42
Volatile organic compounds (VOC)	290.45	0	(OP	1.33	5.81	Other
Lead (Pb)	0	0		0	0	
Total Hazardous Air Pollutants (HAPs)	5.78	0		0.03	0.12	Other
Fluoride (F)	0	0		0	0	
Hydrogen Sulfide (H2S)	0	0		0	0	Errissian Uli
Mercury (Hg)	0	0	Grosse	0	0	
Total Reduced Sulfur (TRS)	0	0		0	0	3_10217-
Sulfuric Acid Mist (SAM)	0	0		0	0	

Pollutant	Pollutant Pre-		Efficiency	Standards	Potential to		
*	Category	Controlled Potential Emissions (tons/yr)	Potential to Emit (PTE)*	Units*	(lbs/hr)*	(tons/yr)*	Determinati on*

Greenhouse Gases (GHGs):

Pollutant		Pre-	Efficiency	Standards	Potential to		
	Category	Controlled Potential Emissions (tons/yr)	Potential to Emit (PTE)*	Units*	Emit (PTE) (lbs/hr)*	Emit (PTE) (tons/yr)*	Determinati on*

^{*} Provide your calculations as an attachment and explain how all process variables and emissions factors were selected. Note the emission factor(s) employed and document origin. Example: AP-42, Table 4.4-3 (8/97); stack test, Method 5, 4/96; mass balance based on MSDS; etc.

- Best Available Control Technology (BACT)

Was a BACT Analysis completed for this unit? No

Lowest Achievable Emission Rate (LAER)

Was a LAER Analysis completed for this unit? $\,\,\text{No}$

Federal and State Rule Applicability

New Source Performance Standards (NSPS)
New Source Performance Standards are listed under 40
CFR 60 - Standards of Performance for New Stationary
Sources.

Not affected

National Emission Standards for Hazardous Air Pollutants (NESHAP Part 61)

Not affected

National Emissions Standards for Hazardous Air Pollutants (NESHAP Part 61) are listed under 40 CFR 61. (These

^{**} AQD Calculated - See 'Help' for more information.

include asbestos, benzene, beryllium, mercury, and vinyl chloride).

National Emission Standards for Hazardous Air Pollutants (NESHAP Part 63) National Emission Standards for Hazardous Air Pollutants (NESHAP Part 63) standards are listed under 40 CFR 63.

Not affected

Prevention of Significant Deterioration (PSD)
These rules are found under WAQSR Chapter 6, Section 4.

Not Affected

Non-Attainment New Source Review These rules are found under WAQSR Chapter 6, Section Not Affected

Emission Unit Attachments

	Public Document	Attachment Type	Description
Attachment	Id		

AQD EU ID: TNK003

AQD EU description:

Company EU ID: PGM W Tk

Company EU Description: Pain/Good Med

Produced Water

- Source Installation or Modification Schedule – Select reason(s) for this emissions unit being included in this application (must be completed regardless of date of installation or modification):

Construction(greenfield/new facility)

Date production began:

04/24/2015

- Emission Unit Type Specific Information

Emission Unit Type: Storage Tank/Silo

Maximum Hourly Throughput 114.2000

Units: barrels/hr

Is Tank Heated: No

Operating Pressure (psig): 14.00

Vapor Pressure of Material 1.00 Stored (psig):

- Potential Operating Schedule - Provide the operating schedule for this emissions unit

Hours/day: 24 Hours/year: 8760

Emissions Information "Potential to emit" means the maximum capacity of a source to emit any air pollutant under its physical and operational design. Any physical or operational limitation on the capacity of a source to emit an air pollutant, including air pollution control equipment and restrictions on hours of operation or on the type or amount of material combusted, stored or processed, shall be treated as part of its design if the limitation is enforceable by the EPA and the Division. This term does not alter or affect the use of this term for any other purposes under the Act, or the term "capacity factor" as used in Title IV of the Act or the regulations promulgated thereunder.

Basis for Determination Options:

- Manufacturer Data
- Test results for this source
- Similar source test results
- GRICalc
- Tanks Program
- AP-42
- Other. If this is selected, attach a document with a description of the method used.

Criteria Pollutants :

Pollutant	Pre-	Efficiency	Standards	Potential to	Potential to Emit (PTE) (tons/yr)*	Basis for Determinatio n*
	Controlled Potential Emissions (tons/yr)	Potential to Emit (PTE)*	Units*	Emit (PTE) (Ibs/hr)*		
Particulate emissions (PE/PM) (formerly particulate matter, PM)	0	0	100 100	0	0	Langer Langer

PM # 10 microns in diameter (PE/PM10)	0	0	0	0
PM # 2.5 microns in diameter (PE/PM2.5)	0	0	0	0
Sulfur dioxide (SO2)	0	0	0	0
Nitrogen oxides (NOx)	0	0	0	0
Carbon monoxide (CO)	0	0	0	0
Volatile organic compounds (VOC)	0	0	0	0
Lead (Pb)	0	0	0	0
Total Hazardous Air Pollutants (HAPs)	0	0	0	0
Fluoride (F)	0	0	0	0
Hydrogen Sulfide (H2S)	0	0	0	0
Mercury (Hg)	0	0	0	0
Total Reduced Sulfur (TRS)	0	0	0	0
Sulfuric Acid Mist (SAM)	0	0	0	0

	Controlled Po	Efficiency Standard Potential to Units Emit (PTE)*	Fmit (PTF)	Potential to Emit (PTE) (tons/yr)*	
--	---------------	--	------------	--	--

Greenhouse Gases (GHGs):

Pollutant	Pollutant Pre-		Efficiency	Standards		Potential to	
	Category	Controlled Potential Emissions (tons/yr)	Potential to Emit (PTE)*	Units*	(lbs/hr)*	(tons/yr)*	Determinati on*

^{*} Provide your calculations as an attachment and explain how all process variables and emissions factors were selected. Note the emission factor(s) employed and document origin. Example: AP-42, Table 4.4-3 (8/97); stack test, Method 5, 4/96; mass balance based on MSDS; etc.

- Best Available Control Technology (BACT)

Was a BACT Analysis completed for this unit? No

- Lowest Achievable Emission Rate (LAER)

Was a LAER Analysis completed for this unit? No

- Federal and State Rule Applicability

New Source Performance Standards (NSPS)
New Source Performance Standards are listed under 40
CFR 60 - Standards of Performance for New Stationary
Sources.

Not affected

National Emission Standards for Hazardous Air Pollutants (NESHAP Part 61)

National Emissions Standards for Hazardous Air Pollutants

Not affected

^{**} AQD Calculated - See 'Help' for more information.

(NESHAP Part 61) are listed under 40 CFR 61. (These include asbestos, benzene, beryllium, mercury, and vinyl chloride).

National Emission Standards for Hazardous Air Pollutants (NESHAP Part 63) National Emission Standards for Hazardous Air Pollutants

Not affected

(NESHAP Part 63) standards are listed under 40 CFR 63.

Prevention of Significant Deterioration (PSD)These rules are found under WAQSR Chapter 6, Section 4.

Not Affected

Non-Attainment New Source Review

Not Affected

These rules are found under WAQSR Chapter 6, Section

Emission Unit Attachments

Required Public Document Attachment Type Attachment	Description
---	-------------

Facility Detail Report
Facility Name: Paint Fed 4075-18-19 & Good Medicine Fed 4075-18-19-1SH
ID: F026690

Sep 18 2015, 09:17:13

- Facility Information

Facility ID: F026690

FacilityName: Paint Fed 4075-18-19 & Good Medicine Fed 4075-18-19-1SH

Facility Description:

Company Name: SM Energy Company

Operating Status: Operating AFS:

Facility Class: Minor Facility Type: Production Site

CERR Class: NON

- Location

Physical Address	City	County	Lat/Long	PLSS	Effective Date
Section 18, 40N, 75W	Converse County	Converse		QNWNW-S18- T40N-R75W	02/18/2015

Location Detail For: Section 18, 40N, 75W

Latitude: 43.44463 Longitude: -105.91353

Quarter Quarter: NW Quarter: NW

Section: 18

Township: 40N Range: 75W

County: Converse State: Wyoming

Distict: District 2

Physical Address 1: Section 18, 40N, 75W Physical Address 2:

City: Converse County Zip: 82633

Effective Date: 02/18/2015

- API

API	
0929370	
0929371	

- Notes

User Name	Date	Note

- NAICS Codes

211111 Crude Petroleum and Natural Gas Extraction (SIC 1311)

- Contacts

Contact Type	Contact Person	Phone Number	Email	Start Date	End Date
Environmental contact	Studer, Luke	(406) 869-8706	1studer@sm- energy.com	02/18/2015	
NSR Permitting contact	Studer, Luke	(406) 869-8706	1studer@sm- energy.com	02/18/2015	

Contact Detail For: Studer, Luke

Prefix: First Name: Luke

Middle Name:

Last Name: Studer

Suffix:

Company Title: Senior EHS Specialist

Contact's Company Name: SM Energy Company

Address 1: PO Box 7168

Address 2:

City: Billings

Zip Code: 59103-7168

State: Montana

Work Phone No: (406) 869-8706

Secondary Phone No.:

Address 2:

Secondary Ext. No.:

Mobile Phone No.:

Pager No.:

Fax No:

Pager PIN No.:

Email: lstuder@sm-energy.com

Email Pager Address:

- Rules & Regs

Subject to Part 60 NSPS: X

Subject to 112(r) Accidental Release

Prevention:

Subject to Part 61 NESHAP:

Subject to non-attainment NSR:

Subject Part 63 NESHAP: X

Subject to PSD:

Subject to Title IV Acid Rain:

Part 60 NSPS Subparts

JJJJ - Stationary Spark Ignition Internal Combustion Engine

Part 63 NESHAP Subparts

ZZZZ - Reciprocating Internal Combustion Engines

- Attachments

Description	Туре	Modified By	Modified Date
-------------	------	-------------	---------------

- Version

Version ID	Version Start Date	Version End Date	Preserved	
CURRENT	09/11/2015			
31084	07/07/2015	09/11/2015	x	134 15
30792	06/18/2015	07/07/2015	Х	
29893	04/03/2015	06/18/2015	х	
29173	02/18/2015	04/03/2015	х	

AQD Emissions Unit ID: ENG001
Emission Unit Type: Engine

Name Plate Rating: 272.00 Units: hp
Site Rating: 272.00 Units: hp

Primary Fuel Type: Field Gas Secondary Fuel Type: N/A

Model Name and Number: NG Engines Engine: 4 Stroke Rich Burn

AQD Description: one (1) natural gas fired generator no larger than 272 hp.

Company Equipment ID: NG Engines

Company Equipment Description: one (1) natural gas fired generator no larger than 272 hp.

Operating Status: Not Yet Installed

Initial Construction Commencement

Date

Initial Operation Commencement

Date

Most Recent

Construction/Modification

Commencement Date:

Most Recent Operation Commencement Date:

- Serial Number Tracking

Serial Number	Manufactur er Name	Constructio n/Installatio n Commence ment Date	Commence ment/Start-	Manufactur e Date	Shutdown Date	Removal Date
TBD	NG Engines					

Permitted Emissions

Emissions Em		Allowable Emissions (Tons/Year	Comments
--------------	--	--------------------------------------	----------

Processes

- Emission Process Information

Process ID: PRC001

Process Name:

Company Process Description:

Source Classification Code (SCC): 2-02-002-53

Control equipment(s) directly associated with this process

CNC001

Units: hp

- Emission Unit Information

AQD Emissions Unit ID: ENG002

Emission Unit Type: Engine

Name Plate Rating: 272.00

Site Rating: 272.00

Units: hp

Primary Fuel Type: Field Gas Secondary Fuel Type: N/A

Model Name and Number: NG Engines Engine: 4 Stroke Rich Burn

AQD Description: one (1) natural gas fired generator no larger than 272 hp.

Company Equipment ID: NG Engines

Company Equipment Description: one (1) natural gas fired generator no larger than 272 hp.

Operating Status: Not Yet Installed

Initial Construction Commencement

Date:

Initial Operation Commencement

Date

Most Recent

Construction/Modification Commencement Date:

Most Recent Operation

Commencement Date:

- Serial Number Tracking

Serial Number		Constructio n/Installatio n Commence ment Date	Commence ment/Start-	et la	Manufactur e Date	Shutdown Date	Removal Date
TBD	NG Engines					10	er gehal de

- Permitted Emissions

Pollutant	Potential Emissions	Potential Emissions	Allowable Emissions	Allowable Emissions	Comments
	(Lbs/hour)	(Tons/Year)	(Lbs/Hour)	(Tons/Year	

- Processes

- Emission Process Information

Process ID: PRC002

Process Name:

Company Process Description:

Source Classification Code (SCC): 2-02-002-53

Control equipment(s) directly associated with this process

CNC002

AQD Emissions Unit ID: HET001

Emission Unit Type: Heater/Chiller

Firing Type: Direct

Heat Input Rating: 0.75

Units: MMBtu/hr

Secondary Fuel Type: N/A

Primary Fuel Type: Field Gas

Heat Content of Fuel (BTU/scf): 1335

AQD Description:

Company Equipment ID: Paint HTH

Company Equipment Description: Paint Fed Heater treater heater

Operating Status: Operating

Initial Construction Commencement 03/02/2015

Date:

Initial Operation Commencement 04/24/2015

Date:

Most Recent

Construction/Modification

Commencement Date:

Most Recent Operation Commencement Date:

- Permitted Emissions

TO DS/DOUR TO TOUS/YEAR TO TOUS/TEAR T	Pollutant	Potential Emissions (Lbs/hour)	Potential Emissions (Tons/Year)	Allowable Emissions (Lbs/Hour)	Allowable Emissions (Tons/Year	Comments
--	-----------	--------------------------------------	---------------------------------------	--------------------------------------	--------------------------------------	----------

- Processes

- Emission Process Information

Process ID: PRC003

Process Name:

Company Process Description:

Source Classification Code (SCC): 3-10-001-29

AQD Emissions Unit ID: HET002

Emission Unit Type: Heater/Chiller

Firing Type: Direct

Heat Input Rating: 0.75

Primary Fuel Type: Field Gas

Secondary Fuel Type: N/A

Units: MMBtu/hr

Heat Content of Fuel (BTU/scf): 1335

AQD Description:

Company Equipment ID: GM HTH

Company Equipment Description: Good Med Heater Treater Heater

Operating Status: Operating

Initial Construction Commencement 03/02/2015

Date:

Initial Operation Commencement 05/06/2015

Date:

Most Recent

Construction/Modification

Commencement Date:

Most Recent Operation

Commencement Date:

- Permitted Emissions

Pollutant	Potential Emissions (Lbs/hour)	Potential Emissions (Tons/Year)	Allowable Emissions (Lbs/Hour)	Allowable Emissions (Tons/Year	Comments
A CONTRACTOR OF THE PROPERTY O	(EDO/110 GIT)	(10110/1041)	(=200/11041)	1 10110/1041	

- Processes

- Emission Process Information

Process ID: PRC004

Process Name:

Company Process Description:

Source Classification Code (SCC): 3-10-001-29

AQD Emissions Unit ID: TNK001

Emission Unit Type: Storage Tank/Silo

Material Type: Liquid

Description of Material Stored: Crude oil from oil well production

Capacity: 400

Units: barrels

Maximum Throughput: 647.1000

Units: barrels/day

AQD Description:

Company Equipment ID: Paint Oil

Company Equipment Description: Paint Fed Oil Tanks Crude 1-8

Operating Status: Operating

Initial Construction Commencement 03/02/2015

Date:

Initial Operation Commencement 04/24/2015

Date:

Most Recent

Construction/Modification

Commencement Date:

Most Recent Operation Commencement Date:

- Permitted Emissions

Pollutant	Potential	Potential	Allowable	Allowable	Comments
	Emissions	Emissions	Emissions	Emissions	
	(Lbs/hour)	(Tons/Year)	(Lbs/Hour)	(Tons/Year	

- Processes

- Emission Process Information

Process ID: PRC006

Process Name:

Company Process Description:

Source Classification Code (SCC): 4-04-003-12

Units: barrels

Units: barrels/day

Emission Unit Information

AQD Emissions Unit ID: TNK002

Emission Unit Type: Storage Tank/Silo

Material Type: Liquid

Description of Material Stored: Crude oil from oil well production

Capacity: 400

Maximum Throughput: 111.0000

AQD Description:

Company Equipment ID: GM Oil Tk

Company Equipment Description: Good Med Fed Crude oil Tanks 1-8

Operating Status: Operating

Initial Construction Commencement 03/02/2015

Initial Operation Commencement 05/06/2015

Date:

Most Recent

Construction/Modification

Commencement Date:

Most Recent Operation

Commencement Date:

Permitted Emissions

Pollutant	Potential	Potential	Allowable	Allowable	Comments
	Emissions	Emissions	Emissions	Emissions	N 10 11
	(Lbs/hour)	(Tons/Year)	(Lbs/Hour)	(Tons/Year	V-

Processes

Emission Process Information

Process ID: PRC005

Process Name:

Company Process Description:

Source Classification Code (SCC): 4-04-003-12

AQD Emissions Unit ID: TNK003

Emission Unit Type: Storage Tank/Silo

Material Type: Liquid

Description of Material Stored: Produced water from oil well production

Capacity: 400

Units: barrels

Units: barrels/day

Maximum Throughput: 1370.0000

AQD Description:

Company Equipment ID: PGM W Tk

Company Equipment Description: Pain/Good Med Produced Water Tanks 1-4

Operating Status: Operating

Initial Construction Commencement 03/02/2015

Date:

Initial Operation Commencement 04/24/2015

Date:

Most Recent

Construction/Modification

Commencement Date:

Most Recent Operation

Commencement Date:

Permitted Emissions

Pollutant	Potential Emissions	Potential Emissions	Allowable Emissions	Allowable Emissions	Comments
1	(Lbs/hour)	(Tons/Year)	(Lbs/Hour)	(Tons/Year	

- Processes

- Emission Process Information

Process ID: PRC007

Process Name:

Company Process Description:

Source Classification Code (SCC): 4-04-003-15

Equipment Type: Catalytic NOx Control Technology

Control Equipment ID: CNC001

AQD Description: NSCR AFRC

Company Control Equipment ID: NSCR AFRC

Company Control Equipment NSCR AFRC

Description:

Operating Status: Not Operating

Initial Installation Date:

Manufacturer:

Model:

- Specific Equipment Type information

Catalytic Reduction Type: Nonselective Catalytic

Reagent Type:

Reagent Injection Rate - specify

inits

Reagent Slip Concentration:

Reagent Slip Concentration % O2:

Inlet Gas Flow Rate: 9999

Inlet Gas Temp: 9999

Outlet Gas Temp: 9999

Air Fuel Ratio Controller: Yes

Pollutants Controlled

Pollutant	Design Control Efficiency(%)		Capture Efficiency(%)	Total Capture Control(%)
NOx - Nitrogen Oxides	89	98	100	98

Associated Control Equipments And Release Points

Release points(s) directly associated with this control equipment

VER001

Equipment Type: Catalytic NOx Control Technology

Control Equipment ID: CNC002

AQD Description: NSCR AFRC

Company Control Equipment ID: NSCR AFRC

Company Control Equipment NSCR AFRC

Description:

Operating Status: Not Operating

Initial Installation Date:

Manufacturer:

Model:

- Specific Equipment Type information

Catalytic Reduction Type: Nonselective Catalytic

Reagent Type:

Reagent Injection Rate - specify

units

Reagent Slip Concentration:

Reagent Slip Concentration % O2:

Inlet Gas Flow Rate: 9999
Inlet Gas Temp: 9999
Outlet Gas Temp: 9999

Air Fuel Ratio Controller: Yes

Pollutants Controlled

Pollutant	Design Control Efficiency(%)		Capture Efficiency(%)	Total Capture Control(%)
NOx - Nitrogen Oxides	89	98	100	98

Associated Control Equipments And Release Points

Release points(s) directly associated with this control equipment

VER002

Equipment Type: Flare

Control Equipment ID: FLA001

AQD Description:

Company Control Equipment ID: PGM Flare

Company Control Equipment Paint/Good Med Flare

Description:

Operating Status: Operating

Manufacturer: Steffes

Initial Installation Date: 04/24/2015

Model: Dual Tip Flare

- Specific Equipment Type information

Flare Type: Enclosed

Elevated Flare Type: Non-Assisted

Ignition Device: Yes

Flame Presence Sensor: Yes

Inlet Gas Temp: 90

Flame Presence Type: Other

Gas Flow Rate:

Sec. Outlet Gas Temp: 900

- Pollutants Controlled

	Design Control Efficiency(%)	Operating Control Efficiency(%)	Capture Efficiency(%)	Total Capture Control(%)
VOC - Volatile Organic Compounds	98	98	98	96.04

- Associated Control Equipments And Release Points

Equipment Type: Flare

Control Equipment ID: FLA002

AQD Description:

Company Control Equipment ID: Flare

Company Control Equipment Paint/Good Med Flare

Description:

Operating Status: Operating

Manufacturer: Steffes

Initial Installation Date: 04/24/2015

Model: Dual Tip Flare

- Specific Equipment Type information

Flare Type: Enclosed

Elevated Flare Type: Non-Assisted

Ignition Device: Yes

Flame Presence Sensor: Yes

Inlet Gas Temp: 90

Flame Presence Type: Other

Gas Flow Rate:

Sec. Outlet Gas Temp:

- Pollutants Controlled

Pollutant	Design Control Efficiency(%)	Operating Control Efficiency(%)	Capture Efficiency(%)	Total Capture Control(%)
VOC - Volatile Organic Compounds	98	98	98	96.04

Associated Control Equipments And Release Points

- Release Point Information

Release Point ID: VER001

Release Type: Vertical

AQD Description: ENG001

Company Release Point ID: ENG001

Company Release Point Description: ENG001

Operating Status: Operating

Base Elevation (ft): 5241.0

Stack Details

Stack Height (ft): 10.0

Exit Gas Velocity (ft/s): 483.83

Exit Gas Temp (F): 325.0

Stack Diameter (ft): 0.25

Exit Gas Flow Rate (acfm): 1425.0

Release Latitude and Longitude

Latitude: 43.44463

Longitude: -105.91353

- CEM Data

D	escription	H2S	SO2	NOX	СО	THC	HCL	HFL	0	TRS	CO2	FLOW	OPACITY	PM

- Release Point Information

Release Point ID: VER002

Release Type: Vertical

AQD Description: ENG001

Company Release Point ID: ENG001

Company Release Point Description: ENG001

Operating Status: Operating

Base Elevation (ft): 5241.0

Stack Details

Stack Height (ft): 10.0

Stack Diameter (ft): 0.25

Exit Gas Velocity (ft/s): 483.83

Exit Gas Flow Rate (acfm): 1425.0

Exit Gas Temp (F): 325.0

Release Latitude and Longitude

Latitude: 43.44463

Longitude: -105.91353

- CEM Data

								1 1		1				
Description	H2S	SO2	NOX	CO	THC	HCL	HFL	0	TRS	CO2	FLOW	OPACITY	PM	l

Sep 18 2015, 09:17:14

- Release Point Information

Release Point ID: AVL001

Release Type: Fugitive (Area, Volume, Line)

AQD Description:

Company Release Point ID: PGM Fugs

Company Release Point Description: Paint/Good Med Fugitives

Operating Status: Operating

Release Height (ft):

- Release Latitude and Longitude

Latitude: 43.44463

Longitude: -105.91353

- CEM Data

Description	H2S	SO2	NOX	со	THC	HCL	HFL	0	TRS	CO2	FLOW	OPACITY	РМ
-------------	-----	-----	-----	----	-----	-----	-----	---	-----	-----	------	---------	----